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POWERED EXPLICIT GUIDANCE MODIFICATIONS & 
ENHANCEMENTS FOR SPACE LAUNCH SYSTEM BLOCK-1 AND 

BLOCK-1B VEHICLES 

Paul Von der Porten,* Naeem Ahmad,† Matt Hawkins,‡ 
and Thomas Fill§ 

NASA is currently building the Space Launch System (SLS) Block-1 launch ve-

hicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently 

designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B 

vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shut-

tle heritage) for closed loop guidance. To accommodate vehicle capabilities and 

design for future evolutions of SLS, modifications were made to PEG for  

Block-1 to handle multi-phase burns, provide PEG updated propulsion infor-

mation, and react to a core stage engine out. In addition, due to the relatively low 

thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying 

out Lunar Vicinity and Earth Escape missions, certain enhancements to the  

Block-1 PEG algorithm are needed to perform Block-1B missions to account for 

long burn arcs and target translunar and hyperbolic orbits. This paper describes 

the design and implementation of modifications to the Block-1 PEG algorithm as 

compared to Space Shuttle. Furthermore, this paper illustrates challenges posed 

by the Block-1B vehicle and the required PEG enhancements. These improve-

ments make PEG capable for use on the SLS Block-1B vehicle as part of the 

Guidance, Navigation, and Control (GN&C) System. 

INTRODUCTION 

NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the 

Exploration Mission 1 (EM-1) test flight. The Block-1 vehicle consists of a Core Stage (CS) pow-

ered by four RS-25 engines, two Solid Rocket Boosters, an upper stage known as the interim cry-

ogenic propulsion stage (ICPS), and an Orion payload. The CS will place the ICPS and its Orion 

payload into a 40.7 km by 1805.7 km (22 Nmi by 975 Nmi) elliptical Earth orbit. Afterwards, the 

ICPS will be responsible for a perigee raise maneuver and a translunar-injection (TLI) burn to place 

Orion in its desired initial orbit, followed by a burn to place ICPS on a lunar swingby into a helio-

centric disposal orbit. (Reference 1) 
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NASA is also currently designing the next evolution of SLS, the Block-1B. This evolution of 

the launch vehicle replaces the ICPS with the Exploration Upper Stage (EUS) powered by four  

RL-10 engines. Planned missions for the Block-1B require EUS to perform ascent completion 

burns to place the EUS/payload stack into a circular Low Earth Orbit (LEO), apogee raise burns to 

insert the stack into a highly elliptical orbit, TLI burns (for Lunar Vicinity missions), and Earth 

Departure Burns (EDBs) (for Earth Escape missions). (References 1-4) 

The Marshall Space Flight Center is responsible for the guidance, navigation, and control 

(GN&C) algorithms, including closed loop guidance, for the Block 1’s CS and Block-1B’s CS and 

EUS. In both cases, the closed loop guidance algorithm of choice is a modified version of the Space 

Shuttle’s Powered Explicit Guidance (PEG) (Reference 5). PEG is a predictor-corrector scheme 

that solves the two point boundary value problem (current state to target state) and produces a 

steering law for the vehicle’s attitude to follow in order to minimize propellant consumption. The 

SLS PEG algorithm is divided into an outer loop and an inner loop (Reference 5). The inner loop 

contains the calculations that are commonly found in PEG development papers (Reference 6) with 

the outer loop serving as a wrapper to the mainline PEG algorithm. 

Some other notable distinctions between the Space Shuttle and SLS versions of PEG include  

1) Shuttle’s PEG was called at 0.5 Hz, while SLS calls PEG at 1 Hz, 2) Shuttle’s PEG was checked 

for convergence after just one pass for each call, while SLS allows up to 10 iterations of the inner 

loop for each call before PEG is declared unconverged, 3) the mass-flowrate-to-initial-mass time 

constant (𝜏) for each PEG phase was computed in PEG’s time-to-go computation algorithm for 

Shuttle, while these are calculated in the outer loop wrapper for SLS, and 4) PEG had 3 algorith-

mically driven constant thrust and constant acceleration phases for Shuttle, while SLS allows for a 

data driven approach to program the number of phases flown out by PEG. 

This paper covers several enhancements to the PEG inner loop algorithm and its outer loop 

wrapper needed for both the Block-1 and Block-1B evolutions of SLS. First, the Block-1 PEG 

modifications since Shuttle are discussed. This is followed by a brief discussion concerning two 

different flight technique approaches used to target the ascent leg of the Block-1B. This discussion 

is used to present a challenging guidance problem studied early in the design of Block-1B which 

required some bullet proofing of the PEG algorithm. Finally, the Block-1-to-Block-1B PEG en-

hancements are discussed. The Block-1 and Block-1B discussions focus on the explanations and/or 

developments of new or augmented algorithms.  

BLOCK-1 MODIFICATIONS TO PEG SINCE SHUTTLE 

In many ways, Block-1’s PEG inner loop is a straight adaption of Shuttle’s PEG with the ascent 

desired velocity mode since both vehicle’s ascent burn arcs are on the order of ~0.227 rad (~13°). 
Therefore, all of the Block-1 modifications with respect to the Shuttle version of PEG are in the 

way PEG is driven via the outer loop wrapper. This section features an overview of the parameter-

ized/data driven approach to programming PEG’s constant thrust/acceleration phases, a discussion 

on how PEG performs some additional lofting to fulfill a Launch Abort System (LAS) jettison 

requirement, details on the Block-1 EO PEG logic, and finally, a description of SLS’s Thrust Factor 

algorithm that provides PEG with updated propulsion information. 

Multi-phase PEG and PEG Phase Manager 

The SLS implementation of PEG allows for multiple phases. Phases can be constant thrust or 

constant acceleration, with either a fixed reference duration or a fixed amount of propellant. New 

phases are distinguished by a change in propulsion parameters, a new stage, or a mass jettison. For 

SLS, phases are typically constant thrust. However, just like for Shuttle, a placeholder constant 
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acceleration phase, known as the g-limit phase, is included after the last loaded phase to account 

for acceleration limiting. There is a maximum acceleration allowed for the vehicle, which is typi-

cally reached at the end of flight when the vehicle is the lightest. 

PEG’s predictor algorithm requires the burn time (𝑡𝑏) and the mass-flowrate-to-initial-mass 

time constant (𝜏) for the current phase and all future phases. PEG’s outer loop uses a phase manager 

to handle this information for multiple phases (with exception of the 𝑡𝑏 for the phase prior to the g-

limit phase which is still handled in the inner loop’s Time-to-Go function). The time remaining for 

a fixed-time phase is simply the pre-loaded burn time. The amount of time since the start of the 

burn is deducted for the current phase, with a protection to avoid using a negative burn time if the 

real burn takes longer than the pre-loaded value. For fixed propellant phases, the mass flow rate is 

used to determine the length of the burn. Each phase’s 𝜏 is computed using the ratio of the engines’ 

mass flow rate and the initial mass for the phase. SLS’s mass estimator provides the current phase’s 

initial mass, which is then decremented for subsequent phases using each phase’s 𝑡𝑏 and any pro-

jected mass jettisons. 

Lofting parameter for Launch Abort System (LAS) Jettison 

The Orion payload includes a LAS on top of the stack. After booster separation, the LAS is 

jettisoned based on a combination of the time since service module (SM) panel jettison, dynamic 

pressure and calculated freefall time for the SM. Should an SM abort be needed, it is imperative 

that freefall time is above a required amount of time. LAS jettison represents a significant change 

in mass; however, PEG is not able to directly account for the complex LAS jettison criteria to 

predict jettison. Comparison of PEG’s performance in a closed loop simulation with a  

fully optimized trajectory shows that the vehicle performance could be improved by lofting more 

prior to LAS jettison. Adjusting the amount of lofting allows for optimization of the tradeoff be-

tween jettisoning the LAS earlier but incurring larger gravity losses on the one hand, and jettisoning 

the LAS later but incurring smaller gravity losses on the other. 

To induce lofting, the target radius is artificially increased prior to LAS jettison with an altitude 

bias. Additionally, CS flight is divided into two constant thrust phases. The first phase is a fixed 

time phase, using an approximate LAS jettison time for the reference time and the mass of the LAS 

and SM panels (the SM panels have a small enough mass to tolerate mass estimate errors associated 

with this approach) for the reference mass jettison. After LAS jettison, the altitude bias is removed 

and the desired radius is used for the radius target. PEG then enters a fixed propellant phase until 

either the acceleration limit is reached or the insertion targets are reached. 

The reference time for the pre-jettison phase is set to the time between SRB separation and LAS 

jettison from the fully optimized trajectory. The altitude bias for a vehicle configuration is found 

by varying the bias over a range of values and simply selecting the value that maximizes the orbital 

insertion mass in the 6-degrees-of-freedom simulation. 

Engine-Out Logic 

The SLS vehicle needs to be able to respond to failure of a single core engine (i.e. loss of thrust) 

while ensuring crew safety. The general strategy to handle an engine-out is specific to the vehicle 

configuration, orbital geometry, and other considerations. A full treatment of engine-out logic is 

out of the scope of this paper. In general, PEG’s response to an engine-out consists of getting up-

dated information about the engines, and selecting a new target if the current targets are no longer 

feasible. 

In the event of an engine-out, PEG will reset a priori engine data (see the next section) to reflect 

the loss of the engine and continue flying as though the vehicle has one fewer engine. The desire is 
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to complete the mission if viable by inserting into the original target orbit. When this is not possible, 

alternate targets are used. Alternate mission targets are developed in a 3-DOF simulator for differ-

ent flight regimes. Finally, 6-DOF Monte Carlo simulations are used to determine times when the 

vehicle can or cannot reach a given target orbit. For Block 1, PEG uses the sensed inertial velocity 

to determine thresholds to target different orbits. For example, for an engine out after a certain 

inertial velocity, the original targets are maintained, while before that threshold, new targets are 

chosen. 

For engine outs during Boost Stage, before PEG takes over, additional analysis is used to favor-

ably change boost stage steering. The goal is to allow boost steering to handle some of the trajectory 

change, leaving PEG less to do to reach the alternate targets. 

The strategy for engine outs for the Block-1B vehicle is still in development. Ultimately PEG 

will still decide between maintaining nominal targets or loading modified targets. 

Thrust Factor 

Similar to Shuttle’s FT_FACTOR algorithm, Thrust Factor provides PEG with better propulsion 

information by scaling phase 𝜏’s and 𝑡𝑏’s for PEG’s predictor to correspond to the estimated thrust 

level. Thrust Factor also provides robustness by implicitly protecting for unknown engine failures 

such as stuck throttle.  

Thrust Factor is a ratio of estimated thrust to predicted thrust. An estimate of thrust comes from 

the sensed acceleration and estimated mass. The predicted thrust is an input into PEG’s outer loop. 

The raw computation of Thrust Factor is shown in Equation (1) 

 𝑇𝐹𝑟𝑎𝑤 = (
𝑚̃𝑎𝑠𝑒𝑛𝑠

𝑇𝑝
) (

𝜂𝑚𝑎𝑥

𝜂
) (1)  

In Equation (1), 𝑚̃ is the estimated mass, 𝑎𝑠𝑒𝑛𝑠 is the magnitude of acceleration from navigation, 

𝑇𝑝 is the predicted thrust, 𝜂𝑚𝑎𝑥 is the maximum throttle level and 𝜂 is the current throttle level. In 

a case of vehicle throttling during flight, the raw estimate will remain constant because the lower 

sensed thrust is the expected thrust. Due to noise in the computed raw signal, a low pass filter is 

applied prior to using Thrust Factor to update parameters for PEG. The low pass filter with gain, 

𝐾𝑇𝐹, and the previous filtered thrust factor signal (𝑇𝐹𝑝𝑟𝑒𝑣) is provided in Equation (2).  

 𝑇𝐹 = 𝐾𝑇𝐹𝑇𝐹𝑟𝑎𝑤 + (1 − 𝐾𝑇𝐹)𝑇𝐹𝑝𝑟𝑒𝑣 (2)  

The acceleration signal is computed using states from SLS’s navigation which are measured at 

the Inertial Navigation System (INS) and not the vehicle’s center of gravity (c.g.). Due to ignoring 

the moment arm from the INS to the c.g., the signal lacks compensation for the centripetal acceler-

ation term, which can be significant when body rates are appreciable. Therefore, 𝑇𝐹 is held constant 

during the initial period of the CS burn when body rates are relatively high to track PEG’s initial 

solution. In addition, for a known engine-out failure, Thrust Factor utilizes an engine status flag to 

snap the filtered signal to initial estimate (i.e. 0.75 for a single engine-out). 

BLOCK-1B ONE-TARGET VS TWO-TARGET ASCENT GUIDANCE PROBLEMS 

The Block-1B ascent profile starts very similar to the Block-1 vehicle. A boost stage trajectory 

powered by two Solid Rocket Boosters and the CS is carried out from launch to booster separation. 

This is followed by the completion of the CS burn. Shortly after CS separation, the EUS performs 

a burn to insert the remaining stack into a circular LEO. 
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There are essentially two flight technique options in flying out the ascent profile. The first ap-

proach, dubbed the “one target” approach, has the CS burn to completion and uses PEG to fly out 

the entire burn arc from booster separation to the LEO insertion (including accounting for the coast 

phases from CS shutdown to EUS ignition). The other method, known as the “two target” approach, 

calls for flight performance reserve to be held on the CS and has PEG perform separate targeted 

burns for the CS and EUS (i.e. after completion of the CS targeted burn, PEG is reset to fly out the 

EUS ascent burn). Both approaches were studied by the SLS Guidance and Trajectories Teams, 

with the two-target approach ultimately baselined in the concept of operations since that approach 

greatly reduced dispersed trajectory variations at the end of core stage flight, yielding lower re-

quired EUS flight performance reserve through the last burn prior to payload separation. Further 

discussion on this topic is out of scope for this paper, other than to introduce the one-target approach 

as a challenging guidance problem. 

From a PEG perspective, the long burn arc, ~0.873 rad (~50°), of the one-target method presents 

several convergence issues when applying the Block-1 and Shuttle versions of the algorithm. In 

order to resolve these issues for the “no-failure” one-target case, several improvements are needed, 

including scaling the velocity-to-be-gained in the PEG Corrector and limiting the tangent of the 

thrust angle in PEG’s Linear Tangent Guidance (LTG) steering law. With the additional challenge 

of handling a single engine out failure (either on CS or EUS), use of Shuttle’s elevation limit (not 

needed for Block-1) and protection of a sign reversal in the components of the thrust turning rate 

vector are also needed. Though the one-target approach was abandoned, these enhancements are 

kept for Block-1B in order to bullet-proof the PEG algorithm. In fact, the elevation limit is required 

in order to close engine-out two-target scenarios. The aforementioned enhancements are discussed 

in the next section. 

BLOCK-1-TO-BLOCK-1B ENHANCEMENTS 

As mentioned earlier, for Block-1B the MSFC-developed SLS GN&C does not just perform the 

CS portion of the vehicle’s ascent leg, but all upper stage burns (via the EUS) as well. Due to the 

thrust-to-weight of the EUS, Block-1B experiences much longer burn arcs than Block-1’s CS: 

~0.611 rad (~35°) for EUS ascent burn and ~0.785 rad (~45°) for some long in-space burns. The 

Block-1B engine-out failure cases can yield even longer EUS ascent burn arcs, upwards of ~0.785 

rad (~45°). These burn arcs, as well as the arcs observed with the one-target method described in 

the previous section require PEG to fly well outside of the assumptions built into the original ascent 

Block-1 PEG algorithm.  Furthermore, the need for EUS to perform TLI and hyperbolic in-space 

burns requires additional desired velocity routines for PEG’s corrector and additional plane control 

options. This section contains the enhancements needed since the Block-1 version of PEG in order 

to bullet-proof the code against one-target method stressing guidance problem, allow PEG to per-

form Block-1B engine-out ascent, perform any potentially desired plane control option, and carry 

out planned in-space burns. 

Safeguards for Constructing Turn Rate Vector 

The geometry of the PEG steering law (Reference 6) is illustrated in Figure 1. The solution 

strategy in the PEG algorithm places 𝝀̂𝐶 vector along the unit velocity-to-be-gained (𝒗𝑔𝑜) from 

thrust. So 𝝀̂𝐶 and burn time satisfy the terminal velocity constraint. All that remains is the solution 

for the turn-rate vector, 𝝀̇𝐶, that satisfies the terminal radius constraint.   
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Figure 1. PEG LTG Ascent Geometry 

The orthogonality between 𝝀̂𝐶 and 𝝀̇𝐶 is a deliberate assumption to aid in the analytic solution 

of the desired turning rate required to achieve the insertion position target. It is known to be near 

optimal in most cases. But for the correct solution to this ascent problem, where there is no down-

range constraint, 𝝀̇𝐶 would have no downrange component (Reference 7).  Consequently, at ex-

tremely low thrust-to-weight levels, two basic assumptions start to break down, resulting in sub-

optimal profiles. At one extreme, the lower thrust to weight levels require 𝝀̂𝐶 to have a larger radial 

component, relative to the Cutoff LVLH frame, to counter gravitational losses over longer burn 

times. This results in larger thrust vector turn-rate magnitudes as the turn-rate’s impact on insertion 

altitude is diminished by the more radial 𝝀̂𝐶 basis vector. At the other extreme, the longer burn 

times result in a larger central angle traversed in getting to cutoff. This larger central angle effec-

tively produces more curvature which compromises the flat earth assumption, producing a more 

radial thrust profile at the same time. Attempts to address these issues theoretically introduces 

greater complexity, compromising the simplistic design which makes the PEG algorithm appealing. 

Furthermore, these issues generally arise in only stressing off-nominal scenarios such as early en-

gine failures. When these issues are mitigated by certain safeguards until either the acceleration 

level increases or until the remaining trajectory arc better approximates a flat earth, the PEG algo-

rithm has shown resiliency in flying out of these difficulties to a satisfactory cutoff state, and in 

many cases with only marginal losses relative to a fuel-optimal trajectory.  

What follows is a description of some of these safeguards developed to address these stress 

situations.  The basic premise is to place limits on the construction of the turn-rate vector in the 

LTG law to reduce the thrust angle. In most cases, similar but less advanced strategies were used 

to address these situations in the Space Shuttle Program. 

Limiting Tangent of Thrust Angle. Generally, the optimality of the PEG LTG construct, which 

constrains 𝝀̂𝐶 and 𝝀̇𝐶 to be orthogonal, degrades when the thrust angle becomes large. A useful 

initial strategy is to limit the thrust angle, to effectively relax the altitude constraint and reduce the 

turn-rate. The thrust angle is defined by Equation (3). 

 tan(𝜙) = 𝜅𝜆̇ (3)  

Here, 𝜅 is the expansion time in burn-elapsed time and defines the reference time 𝑡𝑟𝑒𝑓 in Figure (1) 

with 𝑡𝑟𝑒𝑓 = 𝑡0 + 𝜅. Thus, the 𝜆̇ constraint for a limit on thrust angle is given by Equation (4). 
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 𝜆̇𝜙𝐿
=

tan⁡(𝜙𝐿)

𝜅
 (4)  

Applying this constraint results in an earlier predicted cutoff time that drifts upward while the 

initial thrust angle is held fixed. Once the turn-rate comes off this limit, the predicted cutoff time 

stabilizes to a good static value. 

Elevation-limit. As either 𝝀̂𝐶 becomes more radial, or the burn arc becomes greater, eventually 

there is a risk that the initial thrust vector could have a component that is retrograde. Engineers 

analyzing Space Shuttle early two-engine out abort capability during ascent experienced just such 

situations with the introduction of improved thrust prediction in PEG (Reference 8). Near the start 

of that two-engine out boundary, the improved thrust prediction drove the thrust direction retro-

grade relative to the radial defined by the predicted cutoff position vector. The geometry is illus-

trated in Figure 2. This situation also existed on some of the early engine out scenarios of the Space 

Shuttle Return-to-Launch-Site abort with insufficient trajectory lofting during the fuel-dissipation 

phase, resulting in the PEG algorithm producing initial fly-back thrust attitudes that were down-

range away from, rather than pointing back towards the launch site.  

 

Figure 2. Elevation Limit Geometry 

The Elevation-limit constraint was conceived to inhibit issuing of retrograde steering commands 

and significantly improve flight performance in these low thrust-to-weight scenarios where the or-

thogonality between 𝝀̂𝐶 and 𝝀̇𝐶 was known to be sub-optimal. The solution to the constraint is 

obtained geometrically by computing the thrust vector turning rate magnitude (𝜆̇) for the current 

direction of 𝝀̂𝐶 which limits the current thrust direction in the linear tangent steering law to the 

radial defined by the predicted cutoff position vector. The elevation-limit constraint effectively 

scales down the magnitude of 𝝀̇𝐶 to restrain the initial thrust direction from having a retrograde 

component.  It is important to note that this constraint is applied after the construction of 𝝀̇𝐶. So it 

makes no change in the vector directions of the basis vectors 𝝀̇𝐶 or 𝝀̂𝐶 – only in the magnitude of 

𝝀̇𝐶.   

For SLS, the elevation limit was not required for the Block 1 vehicle due to ascent being exe-

cuted entirely with the CS over a relatively small burn arc. For Block-1B, the presence of the EUS 
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exposed guidance to more severe low thrust to weight conditions and retrograde commanded atti-

tudes during engine-out failures. Additionally the elevation limit constraint has been augmented to 

enable specifying a declination angle, 𝛿, measured positive up-range from the guidance cutoff ra-

dial, to provide compensation for finite burn arc effects, as shown in Figure 2. The unconstrained 

thrust angle in the LTG law is given by Equation (3). Figure 2 shows it exceeding both the elevation 

limits imposed by either 𝑋𝐺 or 𝑋𝐺,𝐴. The constrained thrust angle relative to the augmented radial 

is given by Equation (5). 

 tan(𝜃 + 𝛿) = 𝜅𝜆̇𝐸𝐿 (5)  

Equation (5) defines 𝜆̇𝐸𝐿 as the turn rate limit magnitude imposed by the elevation limit. Its solution 

is evaluated in Equation (6).  

 𝜆̇𝐸𝐿 = [tan(𝜃 + 𝛿)]/𝜅 = [√
1

cos2(𝜃+𝛿)
− 1] /𝜅 (6)  

Sign Reversal of Thrust Turning Rate Vector. Figure 1 illustrates the typical LTG geometry 

during ascent. 𝝀̂𝐶 has a low elevation angle, and the turn-rate vector, 𝝀̇𝐶 has a negative vertical (𝑥) 

component and a positive downrange (𝑧) component in the guidance (cutoff) frame. The vertical 

turn-rate component satisfies the altitude constraint at cutoff and the downrange component is 

solved to satisfy the orthogonality between 𝝀̂𝐶 and 𝝀̇𝐶.  The orthogonality is satisfied by applying 

the first order expression for the position to be gained from thrust (Reference 6).  

 𝑹𝑔𝑜 = 𝑆𝝀̂𝐶 + (𝑄 − 𝑆𝜅)𝝀̇𝐶 (7)  

With the components 𝑅𝑔𝑜𝑥 and 𝑅𝑔𝑜𝑦 computed to satisfy the radial and out-of-plane positions at 

cutoff, respectively, dotting Equation (7) with 𝝀̂𝐶 and enforcing orthogonality between 𝝀̂𝐶 & 𝝀̇𝐶 

yields Equation (8).  

 𝑅𝑔𝑜𝑧 = [𝑆 − (𝑅𝑔𝑜𝑥𝜆𝑐𝑥 + 𝑅𝑔𝑜𝑦𝜆𝑐𝑦)] 𝜆𝑐𝑧⁄  (8)  

With 𝑅𝑔𝑜𝑧  determined, the desired turn rate is given by Equation (9).  

 𝝀̇𝐶 = (𝑹𝑔𝑜 − 𝑆𝝀̂𝐶) (𝑄 − 𝑆𝜅)⁄  (9)  

Generally, if the pitch of 𝝀̂𝐶 increases to where it goes retrograde relative to 𝑿𝐺 (or the burn arc 

increases to where 𝝀̂𝐶 becomes retrograde relative to 𝑿𝐺), the construction of 𝝀̇𝐶 to satisfy orthog-

onality results in a reversal of the 𝝀̇𝐶. This results from Equations (7) and (8) above - with every-

thing being relatively constant from one-cycle to the next - if 𝜆𝑐,𝑧 changes from a positive to nega-

tive component. In that case, Rgoz changes sign in Equation (8), resulting in 𝜆̇𝑐,𝑧 changing sign in 

Equation (9). This undesirable result is shown going from left-to-right in Figure 3. 

The reversal is avoided by defining an augmented guidance frame in the turning rate computations 

that represents the guidance frame rotated by the amount the pitch of 𝝀̂𝐶 relative to 𝒁𝐺 exceeds 

some specified maximum angle 𝜃𝑚𝑎𝑥  . The augmented frame is defined as expressed in Equation 

(10). 
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Figure 3. Turn-Rate Reversal Geometry 

 𝜃𝑎𝑢𝑔 = cos−1(⁡𝝀̂𝐶 ∙ 𝒁̂𝐺) (10a)  

 𝛿 = {
0, 𝝀̂𝐶 ⁡ ∙ 𝒁̂𝐺 ≥ cos(𝜃𝑚𝑎𝑥)

𝜃𝑎𝑢𝑔 − 𝜃𝑚𝑎𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10b)  

 [
𝑿̂𝑇

𝒁̂𝑇

] = [
cos⁡(𝛿) −sin⁡(𝛿)
sin⁡(𝛿) cos⁡(𝛿)

] [
𝑿̂𝐺

𝒁̂𝐺

] (10c)  

The augmented frame is used in the construction of 𝝀̇𝐶.  

Scaling Identity Jacobian in PEG Corrector 

The PEG algorithm uses a predictor/corrector to converge the solution with the velocity-to-be-

gained vector (𝒗𝑔𝑜) as the iteration variable. The correction process corrects 𝒗𝑔𝑜 to null the miss 

between the predicted cutoff velocity vector (𝒗𝑝) and the desired velocity at cutoff (𝒗𝑑). The cor-

rection of 𝒗𝑔𝑜 implicitly equates to an identity relationship with the change in the predicted cutoff 

velocity using the following set of equations: 

 𝒗𝑚𝑖𝑠𝑠 = 𝒗𝑝 − 𝒗𝑑 ⁡ (11a)  

 Δ𝒗𝑔𝑜 = −𝒗𝑚𝑖𝑠𝑠 (11b)  

 𝒗𝑔𝑜𝑛
= 𝒗𝑔𝑜𝑛−1

+ Δ𝒗𝑔𝑜 (11c)  

Thus the Jacobian is assumed to be 

 𝐉 =
𝛿𝒗𝑚𝑖𝑠𝑠

𝛿𝒗𝑔𝑜
= 𝐈 (12)  

For long-arc burns, the identity matrix assumption breaks down, resulting in corrections that oscil-

late and over-correct from one iteration to the next. Applying a contraction factor, 0 < 𝛼 < 1, to 

the usual PEG ascent correction reduces the magnitude of the 𝒗𝑔𝑜 corrections on each iteration, 
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eliminating the over-corrections and thus accelerating convergence. A factor of 𝛼 = 0.5 was em-

pirically found to provide reliable and quick convergence compared to the usual correction logic. 

Therefore, rather than attempting to derive analytic or numerical expressions for the Jacobian, a 

simple approximation, that provides adequate performance, is given by Equation (13).  

 
𝛿𝑣𝑚𝑖𝑠𝑠,𝑥

𝛿𝑣𝑔𝑜,𝑥
≈

𝛿𝑣𝑚𝑖𝑠𝑠,𝑦

𝛿𝑣𝑔𝑜,𝑦
≈

𝛿𝑣𝑚𝑖𝑠𝑠,𝑧

𝛿𝑣𝑔𝑜,𝑧
≈⁡0.5 (13)  

This equates to the approximation in Equation (14).  

 𝐉 = ⁡0.5𝐈, or Δ𝒗𝑔𝑜 = −0.5𝒗𝑚𝑖𝑠𝑠 (14)  

The convergence results of the challenging one-target case, with and without Equation (14), are 

shown in Figure 4. The simple approximation is shown to provide good convergence while PEG 

flies out the entirety of the CS burn, post CS cutoff coast and separation, and EUS burn. 

 

Figure 4. Convergence Performance of One-Target Case 

Plane Constraint Strategy 

A strategy to unify the plane constraint for both ascent and in-space burns is implemented in 

PEG for Block-1B. For each type of burn, one of four unique modes can be selected. These modes 

are PLANE_OFF, RV_NULL, V_NULL, and INTERCEPT. 

In the PLANE_OFF mode, either the orbit plane is unconstrained during the entire burn, or the 

plane constraint is released late in the burn. In this mode the target plane is defined by PEG’s 

predicted burn cutoff position (𝒓𝑝) and velocity (𝒗𝑝) vectors using Equation (15). 

 𝒊̂𝑦 = 𝒗⃑⃑ 𝑝 × 𝒓⃑ 𝑝 (15)  

This mode is being utilized in Block-1B’s Earth Departure Burn (EDB) and Disposal RCS Correc-

tion Maneuver burn.  

In the RV_NULL mode, both out-of-plane position and velocity at burn cutoff are controlled. 

The target plane is specified through an input target set comprising of the right ascension of the 

ascending node (Ω) and inclination (𝑖𝑛𝑐), and is computed using Equation (16). 

 𝒊̂𝑦 = [− sin(Ω) sin(𝑖𝑛𝑐) cos(Ω) sin(𝑖𝑛𝑐) − sin(𝑖𝑛𝑐)]𝑇 (16)  
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Near completion of the burn, plane control is released due to the inability to control position as the 

time to burn cutoff trends to zero. At the point of release, any turn-rate to control the cutoff position 

is frozen using the linear tangent steering basis vectors to define a reference inertial turn-rate vector 

using Equation (17). 

 𝝎 = 𝝀̂𝐶 × 𝝀̇𝐶 (17)  

After release, the target plane is defined by Equation (15) and 𝝎 is used in updating 𝝀̇𝐶 for any 

changes in 𝝀̂𝐶. This mode is utilized during Block-1B’s CS and EUS ascent flight phase.  

In the V_NULL mode, only the out-of-plane velocity at burn cutoff is controlled. The target 

cutoff plane is given by Equation (16).  However, since there is no out-of-plane position constraint, 

the out-of-plane component of 𝝀̇𝐶 is zero. Currently, the plane constraint for Block-1B’s apogee 

raise (for EM-2) and TLI burns is configured as V_NULL. 

Lastly, in the INTERCEPT mode, out of plane position at target intercept is controlled. In this 

mode, the desired orbit plane is defined by the predicted position vector at burn cutoff and the target 

intercept position vector. In this case, the unit normal vector 𝒊̂𝑦 is defined by Equation (18). 

 𝒊̂𝑦 = 𝒓𝑇 × 𝒓𝑝 (18)  

The target intercept position vector, 𝒓𝑇 is specified by input target parameters. The INTERCEPT 

option allows the stage freedom in plane control, while placing the payload on a path where it can 

take out undesirable plane error. 

Desired Velocity Routine for Linear Terminal Velocity Constraint 

Linear Terminal Velocity Constraint (LTVC) is a Space Shuttle-based routine used to determine 

the desired velocity at some point 𝒓0 in order to intercept some other point 𝒓1 later in the conic 

trajectory (Reference 9). A linear relationship exists between the radial and horizontal components 

of velocity at 𝒓1 as shown as defined by Equation (19) 

 𝑣𝑟1 = 𝑐1 + 𝑐2𝑣ℎ1 (19)  

In the above equation, 𝑣𝑟1 and 𝑣ℎ1 are radial and horizontal components, respectively, of the 

velocity vector at intercept vector 𝒓1. 𝑐1 and 𝑐2 are coefficients that define flight path angle. Setting 

𝑐1 and 𝑐2 to zero indicates that 𝑣𝑟1 is zero and constrains the intercept vector to either apogee or 

perigee of the orbit. Hence, 𝒓1 is known and can be either apogee or perigee of the target orbit.      

With 1rv  set to zero, the LTVC routine is implemented to compute the radial and horizontal 

components of the desired velocity vector at 𝒓0. These components are then projected onto the 

plane 𝒊̂𝑦 as shown in Equation (20)    

 𝒗𝑑 = 𝑣0𝑟 𝒊̂𝑥 + 𝑣0ℎ 𝒊̂𝑧 (20)  

Here, 𝒊̂𝑥 and 𝒊̂𝑧 are unit vectors that point along the radial and downrange directions, respec-

tively, at burn cutoff. 𝒗𝑑 is the desired velocity that is needed for PEG. 

This desired velocity routine is used to target apogee raise and TLI burns. 

Desired Velocity Routine for Hyperbolic Target 

Earth Escape cargo missions such as Europa Clipper require SLS Guidance to target hyperbolic 

orbits for which specific energy (𝐶3) is greater than zero. For a given launch date, guidance targets 
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hyperbolic excess velocity vector (𝒗𝑒) which is a function of 𝐶3, declination and right ascension of 

launch asymptote.  

PEG’s corrector routine uses the above input and PEG’s predicted position vector (𝒓𝑝) to form 

the required velocity using Equation (21) (Reference 10).   

 𝒗 =
1

2
𝑣𝑒{(𝐷 + 1)𝒗̂𝑒 + (𝐷 − 1)𝒓̂𝑝} (21a)  

 𝐷 = √1 +
4𝜇

𝑟𝑝𝑣𝑒
2(1+𝒓̂𝑝∙𝒗̂𝑒)

 (21b)  

Equation (21) is then projected on the desired target plane to form desired velocity as shown 

in Equation (22)       

 𝒗𝑑 = 𝒗 − (𝒗 ∙ 𝒊̂𝑦)𝒊̂𝑦 (22)  

CONCLUSION 

This paper discusses how the Space Shuttle PEG algorithm has been modified to accommodate 

the initial evolution of the SLS Vehicle, Block-1. Further discussion centers on the challenges to 

overcome and new capabilities required in PEG in order to carry out more demanding Block-1B 

missions. Finally, several enhancements to PEG going from Block-1 to Block-1B are covered. 

These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guid-

ance, Navigation, and Control (GN&C) System. 
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